NETWORK CONFIGURATION IS HARD!Ge‘%;%ﬁML

* High-level tasks are realized through low-level
commands and scripts: hard to understand

* Distributed configuration: hard to manage

* Variety of network-wide tasks cause changes to the
network: lots of dynamics

* No changes are checked for correctness:
error-prone

SURVEY WITH NETWORK OPERATORS e &

20% make changes more than once a day

89% are never completely certain that changes will
not introduce a new bug

82% are concerned changes might break existing
functionality unrelated to the changes

SURVEY WITH NETWORK OPERATORS Ge?.-;%iﬁ&

20% make changes more than once a day

89% are never completely certain that changes will
not introduce a new bug

“You should track down those 10-20% of operators
who say they are always certain. They are LYING.”

MOTIVATING EXAMPLE: THE START SYSTEM

/

/

L~

3. Registration | Reg/DNS/
process 1| pHcpweb ™

| . i
4. Update S
firewall & scan canner

| !

L |

‘11 Firewall L

5. Update
firewall —

I

i “VVLAN mapper”
6.Update | : | VMPS
VMPS

| Registered Vi AMregistered VLAN

. —

Georgia
Tech

b

Physical Connection

VLAN Connection
Network Download

Router

au Internet
Campus
Network
Switch 1. Host connects
""""""" Client | 7- Host reconnects
M |

MOTIVATING EXAMPLE: THE START SYSTEM Ge?.-;%iﬁ&

3. Registration | Reg/DNS/ Physical Connection
process .[-1:-"-.:— DHCP/Web \\] Network Downionc
| P
4. Update
firewall & scd - Network events
I . . .
{ - Changes in forwarding behavior
5. Update] [A
firew

- Ad hoc scripts
- ul - Configuration and changes are distributed

e - Too complex! .
8. Query VMPS: || AR TR R |7 Host reconnects
| Registered V4 AMregistered VLAN Client
.) D I

el

=——

SOFTWARE-DEFINED NETWORKING “°99%

®

[Software w/ }

control logic

Embedded
control logic

Embedded
control logic

Embedded
control logic

Traditional network SDN

SDN IS NOT A SILVER BULLET Ge?rfgﬁ&@

Low-level commands & scripts:
hard to understand

Distributed configuration:
hard to manage

Programs: e.g., C++,
Java, Python, Pyretic

Central control

Many network-wide tasks, lots
of changes: lots of dynamics

No correctness guarantee:
error-prone

Unsolved

Unsolved

WHAT SDN PLATFORM NEEDS Ge%%iﬁ&

®* Guidance on how to implement a network control
program

— How to provide dynamic control that handles arbitrary
network events

— E.g, Intrusion detection, traffic load shift, etc

* Verification and guarantees of program’s correctness

* Huge missed opportunities in software

DIFFERENT TYPES OF NETWORK EVENTS Gegrgia|

* Network traffic
— Traffic load increase/decrease, security incidents

* User-specific
— User authentication, excessive data usage

* Data-plane events
— Topology change, switch/link failures

DIFFERENT REACTIONS TO AN EVENT Ge‘%ﬁ%ﬁﬂ&b

Event Operators Reaction

Q “Only block that infected host”

Host is infected!
“Block all communications in
the network!”

“Direct communication to
our internal honeypot”

&

10

INSIGHT Gegraia

Network events and dynamic reactions to them
should be programmatically encoded in the
network control program by operators

&.

11

DYNAMIC NETWORK CONTROL PROGRAMSegrgia |

* Software program that embeds event —
reaction relationships

N
Software }____ : Control
olic
program 1 POTEY 1 plane
* update
Network A
events //’:/' ll
”f”’ ,/, : rU|e
e // | update
e’ |
f z" E° \/ ~ Data

B e

, 12

UNANSWERED QUESTIONS Gegrgia

How to embed event-reaction logic in software?

How to verify that the program will make
changes correctly?

Kinetic tackles these questions

|

13

KINETIC Gegroia |

* Domain specific language and control platform

* Helps create SDN control programs that embed
custom event-reaction relationships

* Verifies program’s correctness

14

OUR APPROACH Georgla |

* Domain specific language
— Constrained, but structured

* Express changing behavior as s
a finite state machine

* Verify program’s correctness
with a model checker (NuSMV)

15

KINETIC’S DOMAIN SPECIFIC LANGUAGE Ge%;%‘ﬁ@

* Embedded in Python

®* Borrows some abstractions from Pyretic
— Encodes forwarding behavior in a policy variable

Incoming)| quicy | s Outgoing
packet variable packet

* New constructs and functions to express policies that
respond to changing conditions

Policy Policy

variable 3} variable 1

Network (
event A

)

Incoming { Policy | > Outgoing
packet _ variable 2 |) packet .

IDS EXAMPLE IN KINETIC Georgla |

* Event: infected
* State: policy variable’s value

— allow or block packet

event(infected, True)

ﬁ in.Fec-ted:Tr.ue
e Policy:block

event(infected,False)

infected:False
Policy:allow

There are many different flows
Each flow can have its own independent FSM

17

DECOMPOSING TO MULTIPLE FSMS Ge?rgﬁ&@

* FSM instance is instantiated per flow

Host 1 Host 2 Host 3

I
O
n
—~+
=

AL+ A S F A L+ A

(E]
(e
(E
K

of hosts: N Total # of states: 2N Total # of transitions: 2N

State representation is Linear in N
(instead of geometric)

LPEC: ABSTRACTION TO DEFINE A FLOW Ge%;%ﬁ@

* |In IDS example, flow is defined by source IP
address (host)

* Other policies may require more flexibility
(e.g., need to group packets by location)

* Located Packet Equivalence Class (LPEC)
— Programmer abstraction to define flow

def lpec(pkt):
return match(dstip=pkt[‘dstip’])

KINETIC VERIFICATION PROCESS Ge‘%{gﬁ@

* Kinetic verifies correctness of the program
— User-specified temporal properties
— Verifies current and future forwarding behavior
based on network events

* Verification process is automated

— Constrained but structured language allows
automatic parsing and translation of program

* Verification runs before program’s deployment

20

VERIFICATION PROCESS

Kinetic program

@transition
def infected (self):
self .case(occured(self.event),self.event)

@transition

def policy(self):
self.case(is_true (V(’'infected’)) ,C(drop))
self.default(C(identity))

self .fsm_def = FSMDef(
infected=FSMVar(type=BoolType () ,
init=False ,
trans=infected),
policy=FSMVar(type=Type (Policy ,{drop,
identity }),
init=identity ,
trans=policy))

User-specified
temporal properties

Automatically
generates

NH

MR

NuSMV Model Checker

Georgia @
Tech|)

NuSMV FSM model

MODULE main

VAR
policy
infected
ASSIGN
init (policy)
init (infected)
next(policy) :=
case
infected
TRUE
esac;
next(infected) :=
case
TRUE

esac ;

: {identity ,drop};
: boolean;

identity ;
FALSE;

: drop;
: identity ;

. {FALSE,TRUE};

MH True or False

(w/ counter-example)

21

EXAMPLES OF TEMPORAL PROPERTIES ~ Gegrgia)

* If a hostisinfected, drop packets from that host
G|(infected = [AX]policy=drop)

For all possible transitions from For all possible transitions
current state, from current state,
For all current and future For the next state,
states,

* If host is authenticated either by Web or 802.1X, and is
not infected, packets should never be dropped.

AG ((authenticated web | authenticated 1x) & linfected
—> AX policy!=drop)

22

EVALUATION Georgia |

* Usability evaluation
— User study against over 870 participants
— Lines of code comparison with other SDN solutions

* Performance and scalability

— Event handling and policy recompilation

KINETIC: USER STUDY

Georgia &
Tech

° Demographic Profession
Operator
Developer
Student
Vendor
Manager
Other

Total

216
251
123

80

69
138
877

Experience (years)

1

1-5
5-10
10-15
15-20
> 20

32
310
187
150
122

73
874

* Task

— Implement an enhanced IDS program with Kinetic,

Pyretic, and POX.

24

RANK PLATFORMS BY PREFERENCE Ge(‘i'z%iﬁ&

s 350 [Rank1 Rank 2 [Rank 3|

0

C 300 oo .

@)

& 250 4 — i

vw t [

L2001 4 e il .

y— [

O 150 frraq - :

TR I I e B s S

O 1001 - _::E::j:::_:: _________ - j:::::::::: S

E 50 {--- g R R -

s LB 2 1T O N =N | F =
Kinetic Pyretic POX

25

LINES OF CODE COMPARISON Gegraia
Tech
10 I - = s
- | ¥
0.8 p RN JAEEEEREEERREE .
L 0.6 S I -
0 I R
0.4 J I -A N I - | = Kinetic/]
0.2_......Il......i...__:...1........1... 110 Pyreticl
:| r : Pox
0.0 | I I | I
0 20 40 60 80 100 120
Lines of Code
Programs FL POX Pyretic | Kinetic
IDS/firewall 416 22 46 17
Mac learner 314 73 17 33
Server load balance 951 145 34 37
Stateful firewall None found | None found 25 41
Usage-based rate limiter | None found | None found | None found 30

&5

26

NOTABLE QUOTES Georgla |

* Why did you like Kinetic?
— FSM-based structure and support for intuition

“Kinetic is more intuitive: the only things | need
to do is to define the FSM variable”

“intuitive and easy to understand”

“Programming state transitions in FSMs
makes much more sense”

— More concise
“reduces the number of lines of code”

“the logic is more concise”
27

NOTABLE QUOTES Georgla |

* Why didn’t you like Kinetic?
— Steep learning curve

“Kinetic took less time and was actually more
understandable ...[but] the structure was very cryptic”

— Not friendly when finding why program is wrong

“I spent a lot more time chasing down weird bugs | had
because of things | left out or perhaps didn’t understand”

28

Event handling and policy recompilation

10°

m 2

£ 10
=

1

= 10

10°

Georgia
Tech

1 Event handling time [—1 Single
B Recompilation time Multi
200 400 o600 800 1000

Event arrival rate (events/second)

b

29

KINETIC: REAL DEPLOYMENTS Gegrgia |

®* Campus network

. Registration Scanning
— Functional access control system
— Deployed SDN-enabled switches ><
over 3 buildings
Operation Quarantine
* Home network
— Usage-based access control
— Deployed 21 SDN-enabled wireless
routers over 3 continents Allow Capped

— Jul., 2012 — Feb., 2014
— Presented in ACM CHI 2015

30

KINETIC TAKEAWAYS Gegraia

* Domain specific language and control platform
— Program encodes event-reaction logic

* Extensive user study shows that
— Much easier to express dynamics in the network
— Helps to reduce lines of code

* Scales well to large networks and lots of events

* Verification process reduces bugs in programs

&.

31

DISCUSSION & FUTURE WORK Gegroia

* Combining with verifications in other stacks
— Consistent updates to data plane
— Verification of data-plane state

* More dynamic network policies
— Should collect more real network policies
— Need public repository

&.

32

THANK YOU

More about Kinetic:
http://kinetic.noise.gatech.edu

Contact:
joonk@gatech.edu

Questions?

Georgia
Tech

b

33

